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Abstract: One of the main challenges for viticulture is to sustainably maintain the production of high-
quality grape varieties in the face of climate change. Current models predict an increasing disease pres-
sure for grape, mainly because of warmer conditions in late spring-early summer. New strategies to 
address this challenge can stem from a deeper understanding of the grape biology and of the plant inter-
action with some major biotic stresses, such as mildew diseases. Grape thwarts the attack and invasion 
of pathogens using a composite molecular array, whose components and interactions are not fully 
known. This review aims to provide insights into the current understanding of plant defense mecha-
nisms against fungal pathogens, and to discuss the set of cellular molecules that have been functionally 
identified in grape. It also highlights information related to the activation of grapes’ immunity by using 
high-throughput genome-wide screenings and New Breeding Techniques as a powerful tool to achieve 
long-lasting and broad-spectrum resistance. Finally, the review provides food for thought to improve the 
sustainability of viticulture through the integration of genetic and biotechnological strategies for 
pathogen resistance. 
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1. Introduction 

The cultivated grape (Vitis vinifera L.) has become the world’s leading fruit crop. It is grown in 
almost 90 countries for wine, juice, raisins, and table grapes production. Human selection has led to a 
wide array of varieties endowed with useful traits related to yield, phenology, and berry chemical com-
position. However, these intensive breeding processes caused the loss of several other traits, such as 
resistance to biotic stresses, in the cultivated gene pool that were present in crop wild relatives (Khan et 
al., 2020). Furthermore, several grapevine pathogenic microorganisms are not indigenous to Eurasia, 
and therefore, vines have been not undergone selection pressure to evolve resistance. As a result, the V. 
vinifera varieties are susceptible to various pathogens responsible for severe crop losses. Nowadays, 
growers rely on fungicides applications and vineyard management practices to handle pathogenic fungi. 
However, the impact of chemicals on humans and agrobiodiversity has been widely demonstrated (Dry 
et al., 2019). In March 2019, nineteen Focus Group experts from different wine-growing regions of the 
European Union discussed and shared research needs to increase the resilience of grapevines to pests 
and diseases and to support the productivity of the sector in sustainable ways (EIP-AGRI, 2019). One 
strategy is to shift from a treatment-oriented to a disease-prevention approach by developing fungus-
resistant varieties (Rousseau et al., 2013). They offer significant advantages due to their cost-effective-
ness, safety, and low environmental impact.  
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Worldwide, the most economically important grape diseases are downy (DM), and powdery (PM) 
mildews caused by the ascomycete fungi Plasmopora viticola and Erysiphe necator, respectively. Until 
recently, no European grape V. vinifera, with a single exception (Hoffmann et al., 2008), has exhibited 
resistances to them, but wild North American vines (i.e., V. labrusca, V. aestivalis, V. berlandieri, 
Muscadinia rotundifolia) are significantly more resistant to pathogenic fungi (Mullins et al., 1992). For 
more than a century, grape breeders have attempted to introduce genetic resistance from North 
American Vitis spp. into European cultivars. Interspecific hybrids have not been successful for their low 
wine quality (Teissedre, 2018). Molecular breeding allowed the development of fungus-resistant grapes 
carrying both disease-resistance genes and a significant percentage (more than 85%) of V. vinifera 
genome in their pedigree (Sivčev et al., 2010). These achievements were possible also thanks to knowl-
edge on the molecular basis of disease resistance. In the last three decades, impressive progress in deci-
phering plant immune mechanisms has been made, particularly in the model species Arabidopsis 
thaliana (Zhang et al., 2018). In grapevine, insights into the mechanisms regarding its immune machin-
ery have only begun to be available in in recent years. 

In this review, we first summarize the current understanding on the molecular mechanisms of plant 
resistance. We then discuss the set of specialized molecules in the immunity pathways active in 
grapevine against mildews and report the main breeding achievements in delivering fungi-resistant 
grape varieties. Finally, we discuss the need of translating current knowledge to strategies to improve 
grapevine varieties. 

2. How plant defends against fungi: the immunity pathways 

Protection of grape against fungi depends on both passive and active defense mechanisms. Broadly 
speaking, passive defense mechanisms are pre-existing and independent of the pathogen, while active 
defense mechanisms are activated only after pathogen recognition. To gain access to nutrients or to the 
replication machinery of the host cell, pathogens must first breach the passive defenses. These are the 
natural barriers of healthy plants, such as physical (e.g., wax, cuticle, cell wall, stomatal aperture, 
lenticels) or chemical (e.g., inhospitable pH, inhibitory compounds, phytoanticipins, lack of stimulatory 
compounds needed for pathogen development) (Ziv et al., 2018; Wang et al., 2020). On the counterpart, 
the active defense mechanisms encompass complex networks of genes and proteins. The current under-
standing of active plant defense is nicknamed the new “central dogma of plant pathology”. It consists of 
three main response mechanisms, the ETI (Effector-Triggered Immunity), the ETS (Effector-Triggered 
Susceptibility), and the PTI (PAMP-Triggered Immunity) (Figure 1). 

The initial stages of the plant-pathogen ‘arms race’ start with the plant immunity defense evolution, 
the ETI response mechanism. This mechanism consists of restoring the host species resistance status 
through specific resistance (R) genes. Commonly, the result of defense activation involving R-genes is 
the programmed cell death (PCD), known as the hypersensitive response (HR). It prevents the pathogen 
from obtaining nutrients and completing its life cycle (Mur et al., 2008). ETI is only effective against 
one or a few strains of a particular pathogen that possesses an Avr (Avirulence) protein called effector, 
recognized by an R-protein (Dry et al., 2009). Due to high recognition specificity, ETI signaling 
evolved to be robust against pathogen effectors. However, plant pathogens are highly adaptable and 
have much faster life cycles than their plant hosts. Therefore, resistance conferred by single R-genes can 
be easily defeated and as new pathogen strain appears, ETI is frequently broken (van Esse et al., 2020). 

The effectors mentioned above are one of the principal components of another mechanism, the 
ETS. It is based on the specific pathogen ability to become “adapted” to plant species by evolving effec-
tors. These interact with specific host proteins (effector targets), suppressing parts of their innate immu-
nity. For instance, E. necator and P. viticola are the only mildew species, that have become adapted to 
V. vinifera. One of the well-characterized examples of effector targets are the S-proteins (Susceptibility  
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Figure 1. Representation of the three main response mechanisms of plants triggered by pathogenic 
fungi: the ETI (Effector-Triggered Immunity) (A), the ETS (Effector-Triggered Susceptibility) (B) and 
the PTI (PAMP-Triggered Immunity) (C). MAPK: mitogen activated protein kinase; PCD: programmed 
cell death; TF: transcription factor; R-genes: resistance-genes. 

proteins), encoded by the S-genes. They are pathogen-specific molecules that facilitate the development 
of a disease by inviting and helping a pathogen gain entrance into a plant, negatively regulating the R-
genes, or providing nutrients to support pathogen proliferation. Thus, the deactivation of S-genes can 
make a plant resistant to pathogens. Very recently, Moniruzzaman et al. (2020) published a list of more 
than 100 S-genes identified in plants, of which only 18 have been characterized. For most of them, the 
exact function is not very clear. The authors reported that S-genes can interfere with the expression of 
genes involved in plant resistance at different levels, from pathogen recognition (e.g., receptors in the 
epidermal cells) to molecule production. 

The third mechanism is the PTI. It is based upon recognizing conserved components of pathogenic 
surfaces termed PAMPs (Pathogen-Associated Molecular Patterns), alternatively known as elicitors. 
PAMPs are recognized in the plasmalemma of plant cells by specialized molecules, named PRRs 
(Pattern-Recognition Receptors). They transmit the signal of infection into the cytoplasm and activate 
PTI responses, such as cytoskeleton rearrangements, callose deposition and induction of antimicrobial 
compounds (Zipfel, 2009). The PTI response usually ends up with resistance against pathogen attack, as 
in the case of V. vinifera with the non-adapted mildews, such as E. cichoracearum and P. infestans. PTI 
is effective against most pathogens due to their highly conserved nature. Due to the low recognition 
specificity, PTI cannot be very effective against well-adapted pathogens. It can still provide good immu-
nity with low fitness costs against potential pathogens that are not well adapted. 

3. Molecules that participate in plant-fungi interaction in grapevine 

Plant immunity relies on a set of specialized molecules. Some of them have been studied in 
grapevine and have been used in breeding to obtain resistant varieties. In the following section, we will 
summarize all the molecules that have been proved to play a role in enhancing resistance in grapevine. 
We organized this information into the three main host-perception pathways leading to immunity 
responses (ETI, ETS, and PTI).  
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3.1. Molecules eliciting the Effector-Triggered Immunity (ETI) 

In the ETI, plant response mainly occurs by recognizing pathogen effectors via plant disease resis-
tance proteins encoded by R-genes. The major class of R-genes is the nucleotide oligomerization domain 
(NOD)-like receptors (NLRs), which encode nucleotide-binding site (NB) and leucine-rich repeat (LRR) 
gene families (Michelmore et al., 2013). Historically, NLRs are divided into two classes, namely, TIR–
NB–LRR (TNL) and CC–NB–LRR (CNL) (Meyers et al., 1999; Andolfo et al., 2019). Nowadays, 43 
loci encoding both TNL and CNL proteins capable of conferring increased resistance to downy (31 loci), 
and powdery (12 loci) mildews have been reported from grapevine. They are listed and described in 
Table 1 with the correlated references. Most of them have been identified from the wild grapevine 
species. Among powdery mildew R genes, Run1 (Resistance to U. necator 1), Run2 (Resistance to U. 
necator 2), and Ren5 (Resistance to E. necator 5) were identified in North American species Muscadinia 
rotundifolia; Ren1 from Central Asian V. vinifera subsp. Sylvestris; Ren6, and Ren7 from Chinese V. 
piasezkii; and Ren2 and Ren4 from Chinese V. cinerea and V. romanetii, respectively. The remaining 
minor powdery mildew R loci are Ren3, Ren8, Ren9, and Ren10, reported from North American Vitis 
species of unknown origin. These genes are distributed on 8 out of 19 grape chromosomes. Among them, 
Run1, Run2, Ren1, and Ren4-6 have proven to confer the highest levels of resistance to powdery mildew 
both in in-vitro and in the field. Interestingly, some of them (e.g. Run1 and Ren4) confer PCD resistance 
and have been highly effective in all genetic backgrounds evaluated (Pauquet et al., 2001). Concerning 
downy mildew, 31 R loci (Rpv1 to Rpv31) from wild and cultivated grapevine species have been reported 
to confer some level of increased resistance to P. viticola. These loci are located on almost all chromo-
somes excepted chromosomes 1, 13, 17, and 19. Most of them have been identified from the wild species 
V. amurensis (Rpv8, Rpv10, Rpv12, Rpv22-26), V. riparia (Rpv5, Rpv6, Rpv9, Rpv13), and V. rupestris 
(Rpv19, Rpv28, Rpv3). The remaining loci originated from V. aestivalis (Rpv27), V. piasezkii (Rpv15 and 
Rpv16), M. rotundifolia (Rpv1 and Rpv2), V. cinerea (Rpv14). Rpv1 and Run1 are the only pathogen 
resistance locui that have been cloned from any grapevine species. They have been introduced into sus-
ceptible V. vinifera grapevine cultivars, including ‘Shiraz’, ‘Tempranillo’, ‘Portan’, ‘Maccabeu’, and 
‘Carignan’ by Agrobacterium‐mediated transformation. Transgenic grapevines expressing Run1 were 
found to induce PCD in 67–78% of the penetrated epidermal cells, compared with a mean value of 88% 
in the powdery mildew‐resistant line and 11–15% in untransformed lines. At the same time, downy 
mildew penetration tests of infected leaf discs at seven days post-inoculation (dpi) revealed profuse P. 
viticola hyphal growth throughout the mesophyll cell layer of susceptible Rpv1 transgenic lines and 
non‐transformed cultivars (Feechan et al., 2013). In contrast, in those lines, hyphal growth and subse-
quent sporangiophore development were severely restricted by PCD induction (Feechan et al., 2013). In 
addition to the wild grapevine species, other Vitis species showed efficient resistance to mildews. Very 
recent studies provided evidence that even the cultivated grape V. vinifera could be a source of resistance. 
In the reference Pinot Noir genome, Goyal et al. (2020) identified 386 NBS-LRR genes; 63 of them were 
responsive to powdery mildew stress, and other new classes of resistance gene families (such as EDS1, 
NDR1, PAD4, NPR, RAR1, and PR) involved in ETI pathway. Furthermore, Sargolzaei et al. (2020) iden-
tified three novel NLR encoding R genes on chromosomes 14 (Rpv29), 3 (Rpv30), and 16 (Rpv31) asso-
ciated with a low level of P. viticola sporulation using a genome-wide association (GWA) approach in a 
population of Georgian V. vinifera accessions. A different set of data has been published by Andolfo et 
al. (2019) who studied a phylogenetically distinct class of plant R genes, called RNLs because they carry 
a special N-terminal-resistance domain RPW8 (Resistance to Powdery mildew 8). The authors investigat-
ed RNL genes and transcripts in five V. vinifera cultivars (‘Aglianico’, ‘Falanghina’, ‘Sultanina’, 
‘Tannat’, and ‘Nebbiolo’) plus the reference genome of ‘Pinot’ noir. Based on both RNASeq public 
dataset and expression analysis, their results highlighted that such gene family is present in grapevine 
varieties and experienced inter- and intra-specific expansions. 
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Table 1. R-genes involved in ETI response to grapevine powdery and downy mildew modified from 
Dry et al. (2019). 

R-locus
Source of 
resistance

Origin of source Chromosome
Resistance 

type
R-protein 

type
Reference

Powdery 
mildew 
genes

Run1 M. rotundifolia North America 12 Major TNL Pauquet et al., 2001

Run2 M. rotundifolia North America 18 Major NLR Riaz et al., 2011

Ren1 V. vinifera subsp. 
 sylvestris Central Asia 13 Major CNL Hoffman et al., 2008

Ren2 V. cinerea North America 14 Partial NLR Dalbo et al., 2001

Ren3 unknown North America 15 Partial CNL Zendler et al., 2017

Ren4 V. romanetii China 18 Major NLR Ramming et al., 2011

Ren5 M. rotundifolia North America 14 Major NLR Blanc et al., 2012

Ren6 V. piasezkii China 9 Major NLR Pap et al., 2016

Ren7 V. piasezkii China 19 Partial NLR Pap et al., 2016

Ren8 unknown North America 18 Minor NLR Zyprian et al., 2016

Ren9 unknown North America 15 Partial NLR Zendler et al., 2017

Ren10 unknown North America 2 Minor NLR Teh et al., 2017

Downy 
mildew 
genes

Rpv1 M. rotundifolia North America 2 Partial TNL Merdinoglu et al., 2003

Rpv2 M. rotundifolia North America 3 Major NLR Merdinoglu et al., 2018

Rpv4 unknown North America 5 Minor NLR Welter et al., 2007

Rpv7 unknown North America 7 Minor NLR Bellin et al., 2009

Rpv11 unknown North America 9 Minor NLR Fischer et al., 2004

Rpv17 unknown North America 12 Minor NLR Divilov et al., 2018

Rpv18 unknown North America 12 Minor NLR Divilov et al., 2018

Rpv20 unknown North America 14 Minor NLR Divilov et al., 2018

Rpv21 unknown North America 14 Minor NLR Divilov et al., 2018

Rpv27 V. aestivalis North America 18 Partial NLR Sapkota et al., 2019

Rpv8 V. amurensis China 7 Major NLR Blasi et al., 2011

Rpv10 V. amurensis China 8 Partial ERF Scwander et al.,2012

Rpv12 V. amurensis North America 9 Major CNL Venuti et al., 2013

Rpv22 V. amurensis China 14 Partial NLR Song et al., 2018

Rpv23 V. amurensis China 15 Minor NLR Song et al., 2018

Rpv24 V. amurensis China 15 Minor NLR Song et al., 2018

Rpv25 V. amurensis China 15 Partial NLR Lin et al., 2019

Rpv26 V. amurensis China 16 Partial NLR Lin et al., 2019

Rpv14 V. cinerea China 10 Minor NLR Ochssner et al., 2016

Rpv15 V. piasezkii North America 11 Major NLR Pap et al., 2016

Rpv16 V. piasezkii North America 12 Minor NLR Divilov et al., 2018

Rpv5 V. riparia North America 5 Minor NLR Marguerit et al., 2009

Rpv6 V. riparia North America 6 Minor NLR Marguerit et al., 2009

Rpv9 V. riparia North America 7 Minor NLR Moreira et al., 2010

Rpv13 V. riparia China 9 Minor NLR Moreira et al., 2010

Rpv19 V. rupestris North America 14 Minor NLR Divilov et al., 2018

Rpv28 V. rupestris × 
V. riparia North America 18 Partial NLR Bhattarai et al., 2020

Rpv3 V. rupestris x 
V. lincecumii North America 4 Partial TNL Welter et al., 2007

Rpv29 V. vinifera Southern Caucasus 18 n.d. NLR Sargolzaei et al., 2020

Rpv30 V. vinifera Southern Caucasus 18 n.d. NLR Sargolzaei et al., 2020

Rpv31 V. vinifera Southern Caucasus 18 n.d. NLR Sargolzaei et al., 2020
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3.2. Molecules participating in Effector-Triggered Susceptibility (ETS) 

Successful pathogens evolved ETS mechanisms to evade recognition or to suppress PTI interfering 
with signaling or defense. This interference is made by a heterogeneous class of effectors able to block 
PTI at different levels. Here, we focus our attention on the plant side, and, therefore, the fungal effectors 
will not be discussed. The S-genes characterize the ETS mechanism activated by the plant transcription-
al machine. Among them, the MILDEW RESISTANCE LOCUS O (MLO) genes family has been investi-
gated in grapevine. Its members are characterized by the presence of seven transmembrane and C-termi-
nal calmodulin-binding domain proteins of unknown biochemical activity localized at the plasma mem-
brane (Acevedo-Garcia et al., 2014). The precise mechanism through which the reduction of MLO 
genes expression ends up in resistance to mildews is not completely clear. Some authors hypothesized 
that the resistance is linked to secretory vesicle traffic (Miklis et al., 2007; Feechan et al., 2011) and to 
the formation of cell wall appositions called papillae (Consonni et al., 2006). MLO-based resistance is 
recessive and non-race specific. In grapevine, 17 MLO genes have been identified in the genome, and 
three of them VvMLO3(EU812234.1), VvMLO4(EU591723.1), and VvMLO17(EU812238.1), were 
found to be significantly induced in grape leaves within 8 h of E. necator inoculation, which coincided 
with the beginning of fungal penetration (Feechan et al., 2008). 

3.3. Molecules eliciting the PAMP-Triggered Immunity (PTI) 

Plant PRRs can perceive elicitors and induce a specific set of defense-related genes and associated 
signal transduction pathways. PTI first component is the penetration resistance against non-adapted 
mildews, which involves three penetration (PEN) genes acting in two different but synergic pathways. 
In the first, PEN1 (a member of the soluble N-ethylmaleimide-sensitive factor attachment protein recep-
tor family) mediates membrane fusion events and modulates the trafficking of secretory vesicles to the 
plasma membrane that contain molecules required for penetration resistance against mildews. In the 
second, PEN2 (encoding for a peroxisome-associated glycosyl hydrolase) positively regulates the 
biosynthesis of antimicrobial molecules delivered to the site of mildew infection via the ATP-binding 
cassette (ABC) transporter PEN3 (Qiu et al., 2015). In grapevine, only VvPEN1 (VIT08s0032g01150) 
has been cloned from V. vinifera ‘Cabernet Sauvignon’ (Feechan et al., 2013). Its functional comple-
mentation in the Arabidopsis pen1 mutant demonstrated that it shares the same trafficking pathway with 
VvMLO3/VvMLO4 and undergoes endocytic recycling from the mildew to the powdery mildew attack 
site (Feechan et al., 2013). Studies on PEN2/PEN3 are not available in grapevine (Qiu et al., 2015). 

After fungi penetration, elicitors are recognized by host PRRs at the apoplastic level. Elicitoromic 
studies in fungus-grapevine interactions showed that these structures, such as chitin, chitosan, and 
ergosterol, are cultivar‐non-specific (Wan et al., 2008; Granado et al., 1995; Brulè et al., 2019). The 
PTI response network after elicitor perception can be highly variable among species. PTI employs a 
massive transcriptional reprogramming generated by a complex cascade of signaling events, including 
fluxes of ions such as Ca2+, the production of reactive oxygen species (ROS) and nitric oxide, and the 
activation of mitogen-activated protein kinases (MAPKs) (Knogge et al., 2009). These events are acti-
vated at the plasma membrane level by receptors able to bind the elicitors and transduce the signal into 
the cell. The first chitin-binding PRR was identified in rice as the LysM-RLP CEBiP (chitin elicitor-
binding protein). This is a plasma membrane receptor-like protein (RLP) characterized by an extracel-
lular domain containing two predicted lysin motifs (LysMs) at the N-terminus and a short membrane-
spanning domain at the C-terminus. In grapevine, among 15 CEBiP orthologs, named VvLYKs, three 
are putative direct orthologues of the Arabidopsis AtCERK1/LYK1 and the rice OsCERK1a, namely 
VvLYK1-1, VvLYK1-2, and VvLYK1-3 (Brulé et al., 2019). Functional complementation of the 
Arabidopsis atcerk1 mutant demonstrated the constitutive expression of VvLYK1-1, the inducible 
expression of VvLYK1-2, and the absence of VvLYK1-3. These data provided evidence that VvLYK1-1 
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can completely restore the chitin-triggered immune responses and it plays an important role in basal 
resistance against E. necator (Brulé et al., 2019). 

Downstream the grape receptor activation, hexamers of chitin and chitosan elicit the phosphorylation 
of MAPKs (mitogen-activated protein kinase) cascade comprising three interconnected kinases modules: 
MAPK, MAPKK, and MAPKKK. MAPKKK proteins function at the beginning of the cascade, receiving 
signals from upstream sensors to initiate the pathway and activate the MAPKK proteins by phosphorylat-
ing the activation loop’s serine/threonine residues. V. vinifera genome contains 14 MAPKs, five 
MAPKKs, and 62 MAPKKKs. Among them, only MAPKKK involvement in mildews response has been 
investigated. Wang et al. (2014) observed that E. necator caused a substantial increase of transcripts of 
VviMAPKKK31, 32, 34, 38, 46, and 50. In particular, VviMAPKKK50 showed the highest transcript abun-
dance, between 6 and 27-fold the control. MAPK cascade activates the phytoalexin production and the 
positive regulation of defense genes expression by transcription factors, such as WRKYs and DOFs 
(Brulé et al., 2019). Recently, Yu et al. (2019) reported that the overexpression of VvDOF3 in A. thaliana 
enhances resistance to Golovinomyces cichoracearum, the expression of the SA-responsive defense-relat-
ed gene PR1, and the concentration of SA in transgenic lines. Together, these data suggest that VvDOF3 
functions as a transcription factor in grape and enhances powdery mildew resistance through the SA sig-
naling pathway. Rather than DOFs, the most studied class of TFs in this context are the WRKYs. 
Through the analysis of various genomic and proteomic grapevine databases, Wang et al. (2014) identi-
fied 59 putative grapevine WRKY transcription factors (VvWRKYs). Several of them were upregulated 
in ‘Cabernet Sauvignon’ leaves infected with powdery mildew, included five WRKYs (VvWRKY47, 24, 
16, 08, and 51) previously reported to be upregulated after 1-hour inoculation with the same fungi (Fung 
et al., 2008). Marchive et al. (2013) reported that even VvWRKY1 and VvWRKY2 are involved in regulat-
ing fungal disease resistance. In plants, ubiquitin E3 and Really Interesting New Gene (RING) proteins 
have been recognized to play a role in immunity pathways. Among the E3 ubiquitin ligases, the 
Arabidopsis thaliana Toxicos en Levadura (ATL) proteins have been deeply studied in the last years. The 
ATL grapevine family has 96 members likely to be involved in several physiological processes through 
protein ubiquitination (Ariani et al., 2016). The analysis of co-expression networks among grapevine 
ATL genes across a set of transcriptomic data related to biotic stressors revealed strong correlations 
between VviATL148 and VviATL156 proteins and suggested their role as putative key regulators of fun-
gal infection responses in grapevine (Wong et al., 2018). 

4. Development of fungi-resistant grape varieties: achievements and challenges 

During the 20th century, the breeding programs active across Europe led to several fungus-resistant 
grape varieties. The German ‘Regent’ (‘Silvaner’ × ‘Müller-Thurgau’) × ‘Chambourcin’, cross 1967) 
and ‘Solaris’ (‘Merzling’ × (‘Severnyi’ × ‘Muscat Ottonel’), cross 1975), and the Hungarian ‘Bianca’ 
(‘Eger 2’ (‘Villard Blanc’) × ‘Bouvier’, cross 1963) are probably the most successful cultivars derived 
from such programs, where the achievement of field disease resistance matched the wine quality 
(Guedes de Pinho and Bertrand, 1995; Basler and Pfenninger, 2003; Eibach and Töpfer, 2003; Ruehl et 
al., 2015). These varieties were obtained employing classic breeding strategies, based on phenotypic 
selection of superior genotypes within progenies obtained from crosses. Such methodology has been 
proved to be extremely labour-intensive and time-consuming to such an extent that from the first cross 
to the cultivar release up to 35 years could be necessary (Töpfer et al., 2011). This is due to several 
grapevine-specific limitations, such lengthy juvenile phase (3-5 years), a large plant size, a high 
inbreeding depression, and a limited propagation rate (Eibach and Topfer, 2015; Di Gaspero and Foria, 
2015). A breakthrough in the classic grapevine breeding was the advent of molecular markers. They 
have been pivotal tools for developing genetic maps, providing the framework required for the discov-
ery and localization of genes and quantitative trait loci (QTL). In grapevine, molecular markers have 
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been used to dissect the genetic bases of resistance to powdery and downy mildew, revealing an oli-
gogenic architecture for both traits (Vezzulli et al., 2019). Moreover, to accelerate and enhance cultivar 
development, these tools have been integrated into classic breeding schemes in a process called marker-
assisted selection (MAS) where individuals are chosen based on QTL-linked markers that have major 
effects (e.g. >10%) on the phenotypic variation of the target trait (Collard and Mackill, 2008). MAS 
combined with multiple backcrossing with V. vinifera varieties has been used to efficiently recover the 
recurrent parent (V. vinifera) to a significant percentage (more than 85%) while preserving the wild trait 
of interest (Töpfer et al., 2011). Through the application of these strategies, several fungus-resistant 
grape varieties, possessing desirable agronomic and oenological attributes, have been recently devel-
oped in North America (named FRG, fungi-resistant grapes) and Europe (called PIWI, from German: 
Pilzwiderstandsfähige, “disease-resistant”). They are accepted as V. vinifera varieties in European cata-
logues (Sivčev et al., 2010) for both conventional and organic farming (Pedneault and Provost, 2016). It 
is expected that these new varieties will lessen the average treatment frequency from 12, currently 
observed for the traditional varieties, to 2 (Delrot et al., 2020). MAS has also great potential for efficient 
gene pyramiding; namely, combining multiple resistance QTLs acting against a disease in a single vari-
ety to achieve a better chance of resistance durability. In 2007, Eibach and collaborators gave an exam-
ple of pyramiding resistance loci, two for resistance against E. necator and two for resistance against P. 
viticola. More recently, RUN1 and REN1 were pyramided in the cultivar Crimson Seedless, leading to 
an enhanced resistance to powdery mildew (Agurto et al., 2017). 

MAS hold great promise for grape breeding for fungi resistance. However, examples of successful, 
practical outcomes are still rare (Vezzulli et al., 2019). Does this mean that MAS is not able to deliver 
its expected benefits in grape breeding programmes for resistance? Not exactly. Empirical applications 
of this procedure have shown that the success of MAS relies upon several factors, including the genetic 
complexity of the target trait (many QTLs involved), the interaction between genes (epistasis), and the 
difficulty of finding the same QTL across multiple environments (due to QTL × environment interac-
tions) (Francia et al., 2005). Most loci responsible for the genetic control of the resistance traits account 
for 10%, or less of the phenotypic variation (the so-called minor QTLs) and their reliable detection has 
always been challenging. Thus, grape varieties lacking minor QTLs for fungi resistance can fail to pro-
vide the expected phenotypic response (Merdinoglu et al., 2018). Given that, how is it possible to facili-
tate the fine-association mapping of these QTLs with minor, but significant effects? The adoption of the 
new high-throughput sequencing within grape breeding programs can certainly help in increasing the 
power of QTL mapping. For example, the dropping sequencing costs enable the discovery of tens of 
thousands of markers in grape genome (Myles et al., 2010; Le Paslier et al., 2013). Such huge number 
of markers lay solid foundations for empowering the exploitation of the most powerful breeding meth-
ods for dissecting complex traits, namely Genome-wide association study (GWAS) and genomic selec-
tion (GS) (D’Amelia et al. 2018). However, before the full potential of such strategies can be routinely 
used in grapevine, some challenges associated with the genetic structure of grape germplasm and grape 
genome biology must be addressed (Delrot et al., 2019). 

The enormous breeding effort of developing grape resistant varieties has led researchers to look for 
new strategies through the application of new breeding technologies (NBTs). They comprise several 
techniques that can modify the genetic makeup of a plant variety in a targeted way to introduce new traits 
or modify existing ones. The most promising is genome editing (GE). It is an unprecedented technologi-
cal breakthrough whereby punctual targeted mutations can be introduced into a plant genome through the 
action of sequence-specific nucleases (SSNs, such as Cas9) that generate a DNA double-strand break 
(DSB) at a specific genomic target (Chen and Gao, 2014; D’Amelia et al., 2018). The DSB triggers a 
DNA repair process that leads to the addition or deletion of a few DNA letters. The resulting edited 
sequences can lead to a gene’s deactivation, which is useful if a specific gene makes, for example, a crop 
susceptible to disease infection. Despite many commonalities, edited crops and genetically modified 
organisms (GMOs) differ for a noteworthy aspect: the use of foreign DNA. Indeed, GMOs are commonly 
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made through the introduction of exogenous DNA into a given organism, a process called transgenesis. 
The genome-editing process, instead, does not require the use of foreign DNA and produce mutation of a 
few nucleotides, which is a frequent occurrence in the wild and a driver of evolution. This similarity 
between natural evolution and GE is an angle which can separate edited crops from GMOs (Doxzen and 
Henderson, 2020). In countries that follow product-based regulation (e.g., USA, Argentina, Australia, 
Brazil), it has been established that if no foreign DNA is present in a genome-edited variety, they are not 
subjected to additional regulatory oversight and risk assessment as in the case of GMOs (Eriksson et al., 
2019). In these countries these new individuals (including grapevine) will be probably classified as 
clones. By contrast, in EU, where a process-based regulation exists, the Court of Justice has recently (25 
July 2018, https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-07/cp180111en.pdf) ruled that 
organisms modified by the NBTs have to be considered as GMOs and are, therefore, banned for cultiva-
tion, according to the European Directive 2001/18/EC. The European scientific community expressed a 
strong displeasure to the ruling of the Court of Justice, to safeguard genome editing from GMO legisla-
tion. Scientists claim that regulating edited organisms as GMOs will have noticeable negative conse-
quences for agriculture, society and economy in Europe and hope that they will fall under the regulatory 
regime applied to classically bred varieties (European Plant Science Organization, 2018; Vlaamsche 
Institute Biologie, 2018). Among NBTs, the clustered regularly interspaced palindromic repeats 
(CRISPR)-associated system (Cas9) is the most precise technology (Cong et al., 2013; Jinek et al., 2012). 
It has not yet released any commercial variety but most likely will produce results in countries other than 
Europe. Nowadays, CRISPR/Cas9 has been successfully used to knock out genes in grapevine embryo-
genic callus (Ren et al., 2016; Nakajima et al., 2017) and very few studies reported the production of 
edited plants resistant to fungi (Table 2). Giacomelli et al. (2019) produced plants resistant to downy and 
powdery mildew through CRISPR/Cas9 knockout of multiple S genes. Wan et al. (2020) produced four 
VvMLO3-edited V. vinifera cv. Thompson Seedless lines with enhanced resistance to E. necator. These 
pioneering studies demonstrate that CRISPR/Cas9-targeted mutagenesis can be used to develop disease-
resistant cultivars and facilitate the functional characterization of genes of interest in grapevine. 

Table 2. V. vinifera cultivars used in genetic engineering for fungal resistance. The table reports, for 
each cultivar, the candidate gene, its function, the embryogenic tissues used for plant genetic transfor-
mation and the reference. 

V. vinifera cultivar Gene Function Tissue Reference

Higher resistance to powdery mildew

Neo Muscat RCC2 Chitinase from rice Ovaries-derived ECa Yamamoto et al., 2000

Chardonnay mag-02 Magainin Anther-derived EC Vidal et al., 2006
Merlot, Shiraz and 
Thompson Seedless

Vvtl-1 Thaumatin-like protein gene 1 Anther-derived EC Gray et al., 2008

Pusa Seedless RCC2 Chitinase from rice EC Nirala et al., 2010

Chardonnay 
VvNPR1.1, 
VvNPR1.2 

Non-expressor of Pathogenesis 
Related 1 Anther-derived EC Le Henanff et al., 2011

Thompson Seedless VqSTS6 Stilbene synthase from 
V. quinquangularis Anther-derived EC Cheng et al., 2016

Higher resistance to downy mildew 

Crimson Seedless
chitinase and 
β-1,3-glucanase

Chitinase and β-1,3-glucanase Leaf-derived EC
Nookaraju and 
Agrawal, 2012

Chardonnay VpSTSgDNA2 Stilbene synthase from 
V. pseudoreticulata Anther-derived EC Dai et al., 2015

Brachetto 
VvMLO6, 7, 
11 and 13

S-genes EC Pessina et al., 2016

Thompson Seedless VaTLP Thaumatin-like protein Anther-derived EC Hert al., 2016

Thompson Seedless VpPR4-1 Pathogenesis-related gene Anther-derived EC Hert al., 2016

Thompson Seedless VpPR10.1 Pathogenesis-related gene Anther-derived EC Su et al., 2018

https://curia.europa.eu/jcms/upload/docs/application/pdf/2018-07/cp180111en.pdf
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5. Conclusions  

To cope with powdery and downy mildew invasions in viticulture, speeding-up breeding programs 
is a necessary endeavor. Grapevine has several limitations associated with its biology and the genetic 
architecture of resistant traits, which collectively hampers an efficient improvement. In this review, we 
outlined the progress made in characterization of the molecules involved in the grape defense mecha-
nisms showing how this knowledge is not exhaustive and only partly exploited in grape breeding. 
However, the new opportunities offered by genomics and NBTs, such as genome editing with engi-
neered nucleases, could push the boundaries of current breeding methodologies to translate the knowl-
edge gained into practical applications. 

Author Contributions: Conceptualization, C.V. and R.A.; Writing-original draft preparation, C.V.; 
Review and editing, C.V. and R.A. All authors have read and agreed to the published version of the 
manuscript. 
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