

Exploring edible NATIVe Australian and South African plant

species for Mediterranean ornamental industry - NATIVASA

Coordinatore UNIMI - Antonio Ferrante

Unità di Ricerca SSSA – Anna Mensuali

Società di Ortoflorofrutticoltura Italiana

Exploring edible NATIVe Australian and South African plant species for Mediterranean ornamental industry

Project components two Research Units

UNIMI – Coordinator: Antonio Ferrante **SSSA** – UR Scientific Responsible: Anna Mensuali

Duration 24 months: October 2023 – September 2025

Exploring edible NATIVe Australian and South African plant species for Mediterranean ornamental industry

Project objectives:

Many ornamental plants can be used as ornamental or as edible plants with potential benefit on human health.

This project is undertaken to explore (identify) non-traditional, underused and un-explored **native Australian and South African (ASA)** plant species showing enhanced drought tolerance, novel ornamental value and enriched bioactive phytochemicals fingerprinting for establishment in Mediterranean ornamental industries to reduce the input of water resource during production and to provide profitable new value-added crops for the Italian nursery industry with traits for enhanced sustainability.

Africa

Exploring edible and NATIVe Australian and South African plant species for Mediterranean ornamental industry

Germplasm collection of Australian and South African plant species

> Traditional and micropropagation methods

Cultivation practices

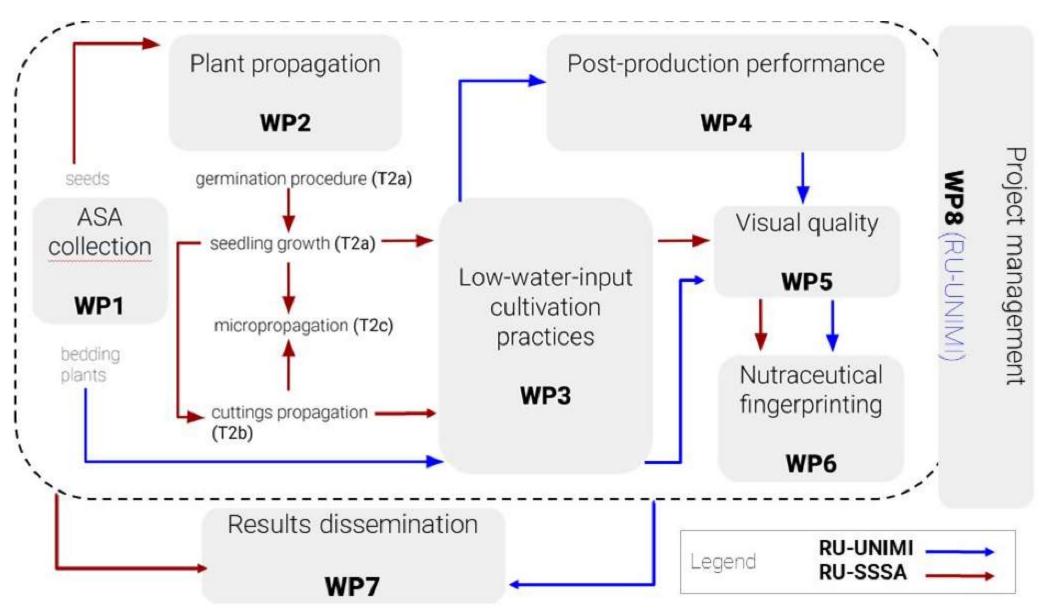
Post-production performance

Ornamental traits

Nutraceutical quality

NATIVASA

Introduction of high-value multifunctional plant species


- easily propagated
- enhanced drought tolerance
- remarkable post-production performance
- high decorative value
- health and nutritional benefits

for a dynamic ornamental industry, resilient to climate change and constantly looking for new products, technologies and market niches.

Exploring edible NATIVe Australian and South African plant species for Mediterranean ornamental industry

Exploring edible and NATIVe Australian and South African plant species for Mediterranean ornamental industry

Workpack	ages (WPs)				-							Mor								20			
WP1		1 2 Deve	3 elop	4 a ge	5 rmr																		
Task 1a	Assessment of collection criteria																						
Task 1b	Seeds collection				-	-	_	_	-						-	-		_					-
Task 1c	Bedding plants collection																	_					
WP2	Personal Provide Anticestan		Esta	ablis	th n	roto	cols (for n	hacro	an	d mi	cro-n	ron	agati	00.0	fcol	lecte	d A	SA nl	ants	neci	es	
Task 2a	Propagation by seeds	-	Lott		an pa	oto			Increa			cio p	Top	Pari	011 0		-cere		Pro pr	arre a	pee		- 1
Task 2b	Propagation by cuttings																				20 21 22 23 in (ASA) plants at species SA plants		
Task 2c	Micropropagation																		-				
Tasl 2d	Selection of superior ASA plants																						
WP3				-		D	evelo	an ci	dture	e pra	ectice	is for	wat	ere	ficie	nt A	SA n	lant	ς.	-			_
1997 - C	the state strate state of the state	The state	-	_	-		cucin	per		pre	cuici	3 101		er e	incre		Ship					1	- 1
Task 3a	Greenhouse trials with ASA plant species																						
Task 3b	Plant growth and physiological performances																						
WP4		-	Eval	luat	e op	otion	s for	pro	vidin	g im	prov	ed p	ost-p	orodu	ictio	n pe	rfor	nan	ce of	ASA	pla	nts	
Task 4a	Simulation of post-production chain											-			-								
Task 4b	Ethylene sensitivity evaluation																						
Task 4c	Chemical treatment to preserve quality																						
WP5							E	valu	ate a	aest	hetic	app	eara	nce d	of AS	A sp	ecies	5		-			
Task 5a	Visual quality through sensory analysis			-																			
WP6		Evaluate nutraceutical fingerprinting of superior plant species																					
Task 6a	Biochemical and metabolomic characterization																						
WP7										Dis	semi	natio	n of	resu	lts								
Task 7a	Project web site and social media presence																						
Task 7b	Final workshop		-		_														-				
WP8							_			P	rojec	t ma	nage	emer	nt							_	
	Kick-off meeting		-																				
Task 8a									-	_	-				_	_		-					

UMINI – SSSA Research activities

WP1 - Develop a germplasm collection of native Australian and South African (ASA) plants

Priority species to be collected will have to satisfy the following criteria:

- i) highly adapted to stressful environments such as drought conditions;
- ii) potentially have novel ornamental value (i.e. unusual shape/size/color of flowers, leaves and/or fruits);
- iii) entire or partial edible;
- iv) rich of valuable bioactive phytochemicals;
- v) suitable for growing in pots;
- vi) have not a predicted invasive potential checked against the Global Invasive Species Database, the noxious weeds lists as well as the DAISIE data base.

Develop of ASA germplasm collection

Assessment of collection criteria (T1a)

- tolerance to arid environments,
- presence of novel ornamental trait
- edibility
- rich source of bioactive phytochemicals
- container-grown plant
- absence of invasive potential

Seeds collection (T1b)

What are bush tucker plants?

- Bush tucker, also called bushfood, is any food native to Australia and used as sustenance by Indigenous Australians, the Aboriginal and Torres Strait Islander peoples, but it can also describe any native flora used for culinary or medicinal purposes, regardless of the continent or culture.
- There are many different types of bush tucker foods:
 - Nuts and seeds (eg. Acacia, Macadamia, bunya nuts)
 - Drinks (eg. hot teas, infusions of nectar laden flowers, fruit juices)
 - Flavourings (eg. lemon scented myrtle)
 - Berries (eg. Astroloma, some Solanum species)
 - Fruits (eg. quandong, Ficus macrophylla, Syzygium)
 - Vegetables
 - Wattle seeds ground to produce 'flour'
 - Plant roots ground to produce a paste or flour.

Why Bush tucker plants?

0	Wateeseed	100	0.76 ± 0.12	NU	17.8±1.2	53.40 ± 7.93	8.14±0.45	01.54
				Fru	it			
1	Australian Desert Lime	19.6	9.36 ± 0.35	ND	177.8 ± 11.7	197.17 ± 22.56	52.28 ± 0.73	249.45
٦	Kakadu Plum	12.2	158.57 ± 12.29	ND	4032.5 ± 282.9	1841.97 ± 196.85	669.50 ± 81.15	2511.47
	Lemon Aspen	15.5	10.49 ± 0.34	ND	90.2 ± 15.3	848.70 ± 73.70	343.95 ± 0	1192.65
	Davidsonia pruriens	7.1	48.60 ± 2.48	47.80 ± 1.2	670.7 ± 49.3	982.41 ± 129.30	210.38 ± 2.06	1192.79
	avidsonia jerseyana	5.3	50.25 ± 6.34	98.65 ± 6.5	599.8 ± 20.7	686.24 ± 109.83	214.04 ± 0.64	900.28
	Quandong (dry)	90.1	32.87 ± 2.89	0.53 ± 0.1	454.9 ± 16.8	1987.99 ± 221.50	39.98 ± 1.00	2027.97
	Riberry	8.8	23.62 ± 1.27	35.34 ± 2.5	376.9 ± 21.3	565.91 ± 72.39	251.31 ± 9.73	817.22
	verry (control)	15.0	35.4	38.93 ± 0.99	397.1 ± 20.0	434.6*	2.4"	436.8*

verals identified in selected native Australian herbs, spices and fruits esented in mg/100g DW with exception of Se and Mo that are presented as µg/100g DW.

The more recent interest in bushfood has been generated by the recognition that Australian bushfood provides:

- Environmental benefits: highly adapted to arid and salt environments and are expected to tolerate changing climatic conditions easily.
- Nutritional and medicinal benefits: they are a powerhouse of nutrition, high in antioxidants, vitamins and minerals.
- Social benefits: the adoption of new arid-adapted crops presents a novel approach to creating productive farming enterprises resilient to climate change in Mediterranean's arid region (i.e.: great potential as a new crop for growers)

Astroloma serratifolium Atriplex semibaccata Billardiera cymosa Bulbine bulbosa & Bulbine semibarbata Capparis lasiantha Cochlospermum fraseri Coprosma quadrifida Dianella caerulea Enchylaena tomentosa Ficinia nodosa Lomandra hastilis Lomandra hystrix Lomandra longifolia Lomandra longifolia Grey Leaf Lomandra spicata Melaleuca brevifolia Melaleuca megacephala Myoporum insulare Nitraria billardierei Petrophile pulchella Santalum acuminatum Solanum lasiophyllum Solanum Orbiculatum Threlkeldia diffusa

Kondrung Creeping / berry saltbush Sweet apple berry Wild native leek Native orange 'nepine' Kapok bush Prickly currant bush Blue flax lily Ruby salt bush Knobby club rush Mat-rush Creek mat rush Spiny headed mat rush Grey leaf Yellow flowered mat rush Short leaf mallee honey-myrtle Large flowered melaleuca Native juniper 'boobialla' Nitre bush Conesticks Desert quandong 'native peach' Flannel bush Wild tomato

bush tucker plants 24 species

Shrub, perennial and rhizomatous herb climbing vine, small hardy perennial sedge, grass

SSSA Research activities

WP2 - Develop protocols for macro- and micro-propagation of selected ASA plant

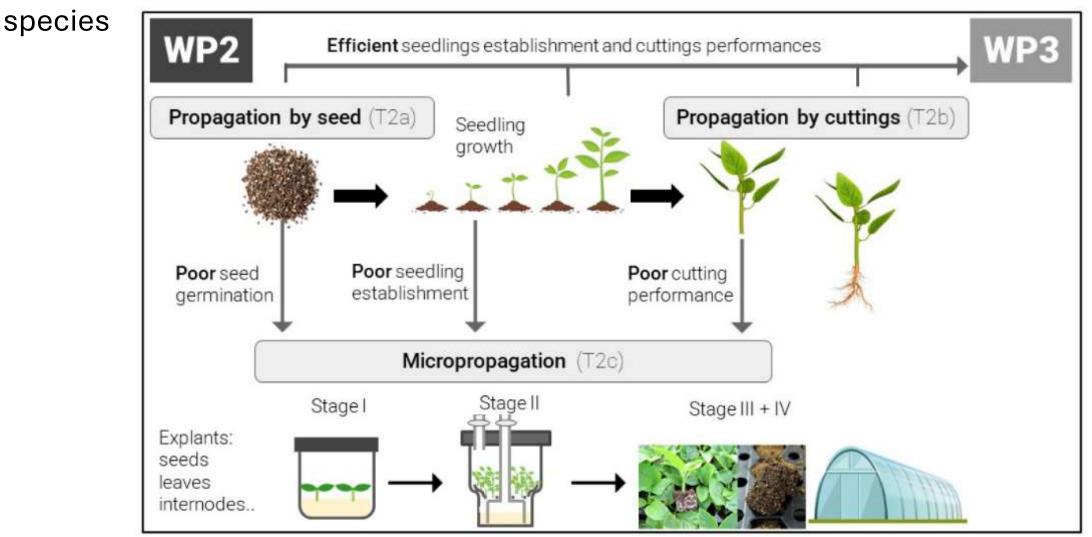
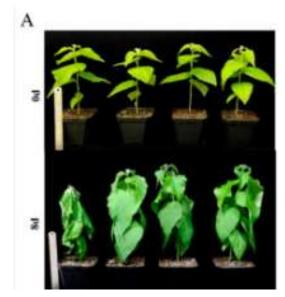


Figure 4: Diagram illustrating the rationale of the WP2

UMINI – SSSA Research activities


WP3 - Develop culture practices for water efficient ASA plants

Task a. Greenhouse trials of plant species obtained from nurseries and seedlings and/or cuttings/*in-vitro* propagated native plants will be conducted to evaluate their tolerance to deficit irrigation (drought).

Task b. Based on plant growth, physiological parameters and visual quality data collected from greenhouse, the irrigation threshold to maintain optimal growth and aesthetic appearance will also be determined for individual plant species.

UMINI Research activities

WP4 - Evaluate options for providing improved post-production performance of ASA plants (for retailer and/or consumer).

Task a. Drought tolerance species will be evaluated in terms of shelf life and plant performance by simulating the post-production chain, from the stages immediately after production to the arrival at the retailers/consumer.

Task b. Since exposure to ethylene during shipping and retailing can reduce the shelf life and performance of ornamental plants a screen for evaluating ethylene sensitivity on these un-explored plant species will be conducted.

Task c. Ethylene inhibitor such as 1-methylcyclopropene (1-MCP) and melatonin, to extend shelf and reduce quality loss during shipping and retailing will be investigated.

WP5 - Evaluate the aesthetic appearance of ASA species.

T5a - Description of visual quality through sensory analysis. Through the creation of appropriate descriptors related to the shape/size/color of plant and to its main organs, and the constitution of a jury, ASA plants will be scored for their visual characteristics.

WP6 - Evaluate nutraceutical fingerprinting of superior plant species. T6a - A fine-tune selection procedure in these potentially health-promoting ASA plants, which includes the characterization of bioactive compounds and nutrients using a biochemical and metabolomic targeted and untargeted approach will be performed to examine the fate of these compounds during cultivation (SSSA), shipping and retailing condition (UNIMI)

WP7 - Dissemination of results

T7a - Project website and social media presence, popular scientific platforms, organization of webinars, participation in scientific workshops and conferences, participation/organization in/of as popular events.

T7b - A final workshop will be organized to disseminate final outcomes to national and international scientists, local and national authorities, institutions, associations, and third parties interested in sustainable specialty crops for novel ornamental value and bioactive phytochemicals.

Thank you for your attention

Antonio Ferrante

Prof.ssa Anna Mensuali, Dott.ssa Annalisa Mecci assegnista

Dott. Luca Quilici

Prof Luca Incrocci Prof.ssa Alice Trivellini