

THE COMPETITIVE ADVANTAGE OF THE TUNISIAN PALM DATE SECTOR IN THE MEDITERRANEAN REGION

Ben Amor, R.*, De-Miguel, MD, Aguayo, E.

*E-mail de contacto: rihabenamor@yahoo.fr

Universidad Politécnica de Cartagena. Escuela Técnica Superior de Ingeniería Agronómica. Paseo Alfonso XIII, 48. 30203 Cartagena. España.

INTRODUCTION

In Tunisia, date-palm cultivation and production are of clear strategic importance in terms of economic, social and environmental development. However, the globalization of markets has had a huge impact on the traditional concept of the comparative advantage enjoyed by Tunisia in date exports, highlighting the necessary determinants for competitiveness in the international scenario, in particular those related to quality and industrial strategies.

In fact, an analysis of the competitive advantage of the Tunisian date industry in the Mediterranean area and Iran over the last 20 years shows that the country is still the main supplier of dates to the EU. The Deglet-Nour variety, in particular, puts Tunisia ahead of traditional competitors such as Algeria and Iran, but it is currently facing new competitors like Israel and re-exporting countries like France. We also report that the industry is currently undergoing several technical problems, including pests and diseases, which represent the main cause for rejection of this product in the EU, and constitute by far the most important phytosanitary problems facing both production and export of dates.

New business strategies (conditioning, new non-chemical treatments, packing, opening new markets, new distribution channels) would be positive responses to tackle current market limitations, the emergence of new producers and restrictive EU policies.

OBJECTIVE:

This work aims to analyze the competitive position of a strategic sector in the Tunisian economy: the date-production sector in relation to its main competitors in the Euro-Mediterranean area and Iran.

П. IV. RESULTS AND DISCUSSION: Table 1. Analysis of no-price competitiveness of dates in the Mediterranean and Iran

													4
Country	Tunisia	Iran	Israel	France	Egypt	Algeria	Italy	Jordan	Turkey	Morocco	Spain	Mediterranean	within the Mediterranean,
Specialization ind	lex (RCA or BIS)												and is well above the index
1991-95	6193,70	2741,62	632,83	29,51	206,91	30213,42	1,54	138,75	1,61	44,57	3,09	100	of all competing countries
1996-00	7345,41	2188,16	305,01	36,65	170,38	35330,78	2,79	60,37	6,57	4,55	2,81	100	analyzed. This highlights the
2001-05	6693,99	1428,91	1127,40	26,43	77,58	13713,10	2,30	137,45	7,81	6,51	2,06	100	importance of the Tunisian
2006-10	5390,84	1260,25	1052,64	18,22	173,30	6720,16	5,12	149,14	8,52	1,17	2,20	100	date in the Mediterranean
Averages	6405,99	1904,74	779,47	27,70	157,04	21494,37	2,94	121,43	6,13	14,20	2,54	100	
Dependency inde	x (DI)				•								
1991-95	10,69	0,00	0,00	201,13	28,66	2,24	76,25	506,68	26,67	158,22	79,68	100	
1996-00	17,51	0,00	0,02	189,01	7,49	0,15	71,98	379,33	38,53	373,25	99,39	100	
2001-05	26,17	0,25	0,04	125,06	5,53	0,35	46,65	343,69	54,86	1877,56	66,50	100	
2006-10	15,16	0,00	0,43	105,47	14,52	0,03	42,87	304,99	77,38	1921,16	58,00	100	
Averages	17,38	0,06	0,12	155,17	14,05	0,69	59,44	383,67	49,36	1082,55	75,89	100	
Constant market	share (CMS)						<u>.</u>						FAOSTAT
1991-95	36,63	32,6	10,25	14,45	1,27	30,67	0,28	0,36	0,08	0,38	0,44	100	
1996-00	40,12	26,95	4,27	16,33	1,07	22,77	0,53	0,23	0,35	0,04	0,49	100	12
2001-05	43,44	21,24	13,4	10,66	0,75	8,26	0,48	0,66	0,41	0,06	0,42	100	Contrada Alla
2006-10	43,95	25,57	13,11	6,72	2,56	4,76	1,06	0,87	0,48	0,01	0,44	100	
Averages	41,04	26,59	10,26	12,04	1,41	16,62	0,59	0,53	0,33	0,12	0,45	100	

Ш. **METHODOLOGY:**

The study focuses on the competitiveness of Tunisian dates in the Mediterranean region and Iran in international markets. Methodology was as follows:

- Analysis of Balassa's Revealed Comparative Advantage Index (RCAI). RCAI, or BIS, =
- **Dependency Ratio (DR)**
 - DR,;; =
- **Constant Market Share (CMS):**

CMS_{ii} or PM_{ii} =

Conclusions:

Given the analysis of this within the Mediterranean. have seen a decline in this comparative advantage due

of all competing countries date in the Mediterranean

Celile Ö. Dölekoğlu¹, Tuğçe Uğur², Dilek Bostan Budak², Seyit Hayran²

INTRODUCTION

In recent years, new products have been began to take its place in shelves, racks and dining table in Turkish fruit market. Kiwi, avocado, pineapple, coconut, Pepino, cashew nuts beside papaya, guaya, pomelo have been entered to Turkish market in recent years. Banana, kiwi, avocado and pepino are produced commercially, but guaya, pitaya and passiflora are produced in the limited area for the adaptation study in Mediterranean strip. Demand for these products, including tropical fruits with limited production, is also increasing. Total production quality of avocado was 11 tons in 2010 and this value increased 18 tons 2014. Similarly production quality of kiwi was 300 tons in 2010 and this value increased 317 tons in 2014. The import of some products, which its production began for adaptation study, has been increased in recent years. These products imported as fresh and also have been take its place in market as canned and chopped foods. Turkey imported pineapple, mango, guava, avocado, kiwi, cashew, coconut, papaya, pomelo, it's worth 49 5 million dollar in 2014

MATERIALS and METHODS

This study includes data from surveys conducted with 387 households in Adana province to determine the tropical fruit consumption in households.

Fruit

Kiwi

Mango

Banana

Papaya

Pepino

Pitava

omelo

Coconut

Passiflora

Pineapple

Avocado

RESULTS

The factors that affect the recognition, consumption and purchase frequency of tropical fruits were determined by surveying the perception and attitude of the consumers. High recognition rate of tropical fruits (83.7%) was found. There are statistically significance (p<0.05) between recognition of tropical fruit and numbers of children, income and chronic disease. But there is no statistically significance between recognition of tropical fruit and gender (Table1). Except bananas and kiwi fruit, pineapple (42.4%), coconut (17.3%) and avocado (14.8%) were the most consumed fruits. Pitaya, with the least recognition, has no consumption (Table 2). The high price of tropical fruits is one of the biggest reasons for not consuming these products. The lack of availability and habits are important reasons as well. (Table 3).

Consumption (%)

42.4 14.8

90,2

7,8

99

0.5

0.3

2.1

1.3

0

0,3

17,3

Table	1.	Recognition	of	Tropical	Fruits
Tubic	•••	Recognition	•	nopioui	1 1 4 1 4 1 4

Variable	Consumption Status	Atten	dance	X ²	df	Р
		Yes	No	1.1.1	1.76-2	1.0
	Female	142	25			
Gender	Male	182	38	0,369	1	0,37
	<1000	8	1		11	
	1001-2000	98	37		5	1
Income	2001-4000	155	24	23,78		0,00
	40001-6000	36	1			
	6001 ve üstü	27	0			
	None	101	17			
	1	76	11			
Number of	2	99	15	17 70	6	0.01
Children	3	35	9	17,79	0	0,01
	1 and more	11	8			1000
	4 and more	2	2			
Chronic	Yes	87	237	27.01	1	0.00
Diseases	No	38	25	27,01		0,00

Table 2. Recognition and consumption of tropical fruit Recognition (%)

94,1

83.7

99,5

70

99,7

27.4

15.8

25.3

5.2

3.6

4,1

97.2

Table 3. The reasons for no consumption tropical fruit

Reasons	Yes	No	No idea
I think that its tastes isn't good	22,50	50,90	26,60
Very expensive	74,70	18,10	7,20
They are not sold in shopping place	81,70	15,20	3,10
I do not have the habit	93,80	5,90	0,30
Our domestic products is more important	66,90	29,70	3,40
There is no differences than other fruit	20,70	70,50	8,80
I think that not healthy	15,00	77,00	8,00
I don't trust because that imported mostly	32,60	58,10	9,30
Views do not appeal because it is different	17,10	66,70	16,30

Table 4. Result of Factor Analysis

Factors	Eigenvalues	Variance	Total Variance
Health	6,2	24,9	24,9
Traditionalism	2,8	11,3	36,2
Selective diet	1,6	6,5	42,7
Curiosity	1,4	5,7	48,4
Innovativeness	1,4	5,3	53,7
Food Perception	1,2	4,6	58,3
Visuals	1,1	4,3	62,6

1 Cukurova University, School o Civil Aviation, Aviation Management, Balcalı Adana/Turkey 2 Cukurova University, Agriculture Faculty, Department of Agricultural Economy, Balcalı Adana/Turkey

amount.

Factor Analaysis

Consumers' attitude was examined using a scale contain of 25 items. And factor analysis was performed. The internal consistency coefficient Cronbach Alfa of the scale was 0.882 and KMO measure of sampling adequacy was found to be 0.848. These values showed that datas were suitable for analysis. As a result of analysis, the scale consists of 7 factors explaining 62.70% of total variance (Table 4). First factor explained 24.90% of total variance and it was named as health. Second factor was named as traditionalism and it explained 11.20% of total variance. Third factor was named as selective diet. And other four factor according to the factor loading were named as curiosity, innovativeness, visuals and food perception.

Distribution and health condition of old European chestnut (Castanea sativa Mill.) orchards in Slovakia

¹Michal Pástor, ²Jozef Pažitný

¹Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, Department of Landscape Planning and Design, T. G. Masaryka 24, 960 53 Zvolen, Slovakia

²Slovak Acamedy of Sciences, Institute of Forest Ecology in Zvolen, Branch of Woody Plants Biology in Nitra, Akademická 2, 94901 Nitra, Slovakia

European chestnut (*Castanea sativa* Mill.) is one of the oldest non-native woody plant species in Slovakia. Chestnut occurs here mostly in extensive old orchards or forest stands. Currently, the health condition as well as chestnut production has rapidly declined as a result of enormous dying out of chestnut individuals infected by fungus *Cryphonectria parasitica* (Murr.) Barr. During last decades the fungus gradually spreaded at all chestnut localities.

The three major introduction centres of chestnut distribution with supposed introduction period:

- 1. Bratislava (Roman era) 2. Jelenec (13th century)
- 3. Modrý Kameň (16th-17th century)

Bratislava - Jeséniova site is the only public chestnut orchard in capitol city of Slovakia.

Jelenec was originally an orchard, which was gradually transformed into forest. There is a very high density of trees. It is protected area and the largest compact chestnut stand in Slovakia.

Modrý Kameň region is area with the biggest chestnut production in Slovakia.

AN UPDATE OF EFSA'S DATABASE ON HOST PLANTS OF XYLELLA FASTIDIOSA

IOANNIS KOUFAKIS, CIRO GARDI, SARA TRAMONTINI, MIREN ANDUEZA, MARCO PAUTASSO, ANDREA BAÙ, GIUSEPPE STANCANELLI ANIMAL AND PLANT HEALTH UNIT, EUROPEAN FOOD SAFETY AUTHORITY, PARMA, ITALY

Introduction

- > *Xylella fastidiosa*, a vector-transmitted bacterium, is associated with important diseases in a wide range of plant species and is regulated as harmful organism in the EU.
- > In Europe the disease was reported in 2013 in Apulia, southern Italy and in 2015 in Corsica and southern France.
- > EFSA was requested by the European Commission to create and periodically update a database of the host plants of *X. fastidiosa*.
- > The first publication of the database, including the categorization of host plants, was in April 2015.
- Then, an extensive literature search approach was used for updating the database including papers and reports published until 20th November 2015.

Results

- The updated list consists of 359 plant species (including hybrids) from 204 genera and 75 different botanical families.
- Compared to the previous database, 44 new species and two new hybrids, 15 new genera and 5 new families of plants were included.
- > The majority of the new species (70%) were found in Apulia, Corsica and southern France.
- > Update on the distribution of *X. fastidiosa* host plant species in Europe and worldwide (Figure 1, 2).

Figure 1. Distribution of X. fastidiosa host plants in 1990

Contact: Hans Van de Put | Laboratory of Plant Ecology | hans.vandeput@UGent.be | www.plantecology.ugent.be

¹Institute of Earth Systems, Rural Sciences and Food Systems Division, University of Malta, Msida - Malta ²Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A) Catania University - Via Valdisavoia 5 - I-95123 Catania – Italy

Aim									-	Parameter	Range
The aim of this study was;	rs: Pixie Constitut	ion and Pol	limore wide	espread cultiv	vars in the n	roduction of	f seedless wa	termelon i	n Malta	рН	5.19-5.78
• to evaluate quality parameters of mini and medium-sized watermelons and the relation between agronomic quality parameters with health promoting compounds, hence the adaptability of grafted watermelon cultivars to the climatic and agronomic practices on the island.								Conductivity	2498-2928 μS/cm		
compounds, nence the adaptability of graned watermelon cultivars to the climatic and agronomic practices on the Island.								Titratable Acidity	0.555-0.932 5 g/l		
Methodology Triploid watermelon Pixie and Constitution as well as diploid watermelon cultivar. Polimore were cultivated during two growing cycles. Transplant dates were								Brix	9.613-10.55 %		
15 of Arril and 15 of May. Prior to transplant these cultivars were grafted in a professional nursery on Macis rootstock. A harvesting a number of fruit were									76		
sampled and taken to the lab for the following	determinations;	weight, sha	ape (lenght/	width ratio)	and for qual	itative parar	neters, pH a	nd conducti	ivity - pH/	Lycopene	0.525-0.097 5
Conductivity meter (Thermoscientific Orion St	ar A215) Titratabl	e acidity –	Titrimetric ar	nalysis (SI An	alytics Titro	line Easy), To	otal soluble s	olids (Brix)	-		%w/w d.w.
Refractometer (Atago), Polyphenols – Folin-Ci	ocalteu test (Attai	rd, 2013) ar	nd Lycopene	- Spectroph	otometric m	nethod (Fish	et al, 2012).	()		Polyphenolic	0.741-1.762
				-		,				content	% w/w d.w.
Results and Discussion	- 10 P										
Results show that the Constitution (5450 g)	Variables	Length	Width	LW ratio	Cond	Brix	рH	ТА	Lycopene	PolvPhenols	%DM
had superior weights to the Pixie (3262g)	Weight	0.953	0.940	0.264	0.276	0.168	0.322	-0.088	0.099	0.138	-0.024
watermelons (p<0.001). This was also	Length		0.937	0.423	0 264	0 1 2 1	0 403	-0 189	0.046	0 161	-0.038
exhibited in the lengths $(p<0.0001)$ and widths $(p<0.001)$ of these two particular	Width		51557	0.082	0.210	0.206	0.343	-0.116	0.104	0.188	-0.057
widths instruction of these two particular											

0.193

-0.205

0.234

0.270

0.052

0.158

-0.264

0.439

0.349

-0.691

-0.125

-0.321

-0.300

-0.051

-0.191

-0.021

-0.061

-0.427

0.232

-0.390

0.498

0.028

0.097

0.476

-0.086

0.373

-0.579

-0.866

Correlation statistics revealed length, width and weight were positively (r>0.937), titratable acidity and pH negatively correlated with each other (r=-0.691). However pH correlated with the morphometric parameters in a positive way. Lycopene and total polyphenols were positively correlated with each other (r=0.498), but both correlated negatively with % dry matter and Brix content (r<-0.300). A positive correlation was shown between % dry matter and Brix content (r=0.476). Principal component analysis showed a distinctive discrimination between the Constitution cultivar vis-à-vis the other cultivars.

References: Fish, W. W., Perkins-Veazie, P., & Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. *Journal of Food Composition and Analysis*, 15(3), 309-317. doi:http://dx.doi.org/10.1006/jfca.2002.1069

Attard E. (2013). A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Central European Journal of Biology. 8(1):48-53. DOI: 10.2478/s11535-012-0107-3

LW ratio

Lycopene

PolvPhenols

Cond

cultivars. The conductivity, pH, titratable acidity, Brix and lycopene did not show any

significant differences for the three cultivars

at the two transplanting dates. However,

there was a significant difference between

the Constitution and the other two cultivars

(p<0.01) for their total polyphenolic

(0.741-1.762% w/w d.w.) content.

Study on Boimertical Idicators of Fresh Fruits of Bulgarian and **Introduced Plum Cultivars of Prunus Domestica L.**

Stela Dimkova, Darina Ivanova, Silvena Todorova, Nikolina Marinova The Experimental Station of Dryanovo - Bulgaria

Introduction

The main plum growing regions in **Bulgaria are four:**

-Central Balkan Mountain region -East Balkan Mountain region -West Balkan Mountain region -Sredna Gora region

The most popular cultivar in Bulgaria

'Stanley', followed by 'Čačanska lepotica', 'Althan's Gage', 'Gabrovska'

The Experimental Station – Dryanovo, Bulgaria

Introduced plum cultivars: Stanley, Opal, Ontario, Hramova rencloda, Althan's Gage Čačanska lepotica Bulgarian plum cultivars: Balvanska slava. Gabrovska. Gulyaeva, Strinava

Materials and Methods

The observation was conducted in the period 2014-2015. Fresh fruits from 6 introduced plum cultivars were examined and 4 Bulgarian cultivars.

GABROVSKA **Biometrical Indicators** - fruit sizes, arithmetic mean diameter, geometric mean diameter, fruit weight, stone weight and dry matter

Cultivar		Average s	sizes-mm			
	Length	Width	Thickness	Geometric mean diameter Dg. mm	Arithmetic mean diameter – Da, mm	Surface, cm ⁻²
Stanley	46,21	35,55	35,74	38,87	39,17	47,43
Strinava	43,22	35,99	34,92	37,87	38,04	45,03
Gabrovska	42,76	33,82	31,68	35,78	36,09	40,20
Gulyaeva	42,03	35,02	34,12	36,89	37,06	42,74
Balkanska slava	47,8	38,18	37,86	41,03	41,28	52,87
Hramova renkloda	35,88	37,23	34,12	35,72	35,74	40,06
Opal	33,26	30,4	30,46	31,34	31,37	30,85
Ontario	37,78	35,84	36,45	36,68	36,69	42,24
Althan's Gage	38,42	41,02	40,8	40,06	40,08	50,39
Čačanska lepotica	44,55	36,72	36,46	39,07	39,24	47,93

Result and discussion

Fig.1. Average value of fruit weight for different years in the period :

Conclusion: Cultivars can be divided in the following groups: Large-size, average-size, small-size fruit

IMPACT OF COMPOSTED WASTE PAPER CASING IN COPRINUS COMATUS CULTIVATION

Agnieszka Jasińska¹, Ewelina Wojciechowska¹, Mirosław Mleczek², Ketil Stoknes

¹Department of Vegetable Crops, Faculty of Horticulture and Landscape Architecture, ² Department of Chemistry, Faculty of Wood Technology Poznań University of Life Sciences, Poland, ³ Lindum AS. Drammen, Norway; email: agajas@up.poznan.pl

Casing material is crucial element of obtaining high quality yield in cultivation of *Coprinus comatus*. In commercial cultivation, carpophores appear on the surface of casing material covering compost after germination phase. Peat, as the most common casing material is "slow-renewable" factor and its geographic availability is limited. Recently use of alternative cheap and easily available casing material is investigated.

Objective: applicability of casing material from composted waste office paper supplemented with AD liquid fraction as an addition to peat in cultivation

	Fruiting b	Casing					
Substrat and casing type	Yield (g/3k substrate)	DM (%)	DM (%)	C (%)	N (%)	Organic Matter (%)	рН
SCM+Peat	97	6	21	14	0,7	47	7,5
SPD +Peat/Paper 15%	250	8	26	18	0,53	40	7,8
SPD +Peat/Paper 25%	287	12	30	21	0,46	31	8,1
SPD+Peat/Paper 35%	350	16	37	25	0,28	27	8,3

Results: Composted waste paper could be used as alternative casing material in cultivation of *Coprinus comatus*.

Scientific work financed from the funds for science in 2012-2015 granted to international co-funded project No 179/CIPUE/2012 and PULS Young Researchers Subsidy No 507 649 68

Electrical Conductivity Relates Seed Germination in Leek

Eren ÖZDEN, İbrahim DEMİR Ankara University, Faculty of Agriculture, Department of Horticulture, 06100 Ankara, TURKEY E-mail: erozden@ankara.edu.tr

Abstract

Electrical conductivity (EC) is a seed test used to predict seed vigour in different crops. Recently, it is for estimating seed germination in cabbage and *Brassica* family. This work is conducted to test whether it can be used as a indicator of seed germination potential of leek seeds (*Allium ampelosprasum var. porrum*). Seeds were aged artifically at 45°C with 20% seed moisture contents during 96 hours, and seed radicle germination varied between 96 and 7%. EC measurements were done on 50 seeds of 4 replicates. Each replicate was soaked in 40 ml in distilled water over 24 hours at 20 °C. In germination test ISTA rules were followed in germination percentages significantly related to ($R^2=0.99$, P<0.001) EC values. In the second stages of the study the relationship beetwen EC and seed germination of commercially available leek seed lots will be tested. Key words: Seed aging, seed quality, conductivity

MATERIALS AND METHODS

Initial seed moisture content 9,1% Moisture contents were arranged to 20% by humidifying

Verent

EC measurements were done on 50 seeds of 4 replicates. Each replicate was soaked in 40 ml in distilled water over 24 hours at 20 °C

5 x 400 seeds were prepared packets and aged artifically at 45°C with 20% seed moisture contents during 12, 20, 28, 46 and 96 hnurs.

Seeds (4 replications of 50 seeds) were germinated at 20 °C for 14 days between papers

Table 1. The effect of aging on germination percentages, (total, normal, abnormal and dead seeds) mean

2	germination time of leek seeds										
2	Treatments	Total Ger.(%)	Normal Ger. (%)	Anormal Seeds (%)	MGT (day)	Dead Seeds (%)					
Ē	Control	96a	75a	21	4,2	4					
2	12 H	93ab	70b	23-	4,3	7					
-	20 H	90b	61c	29	4,4	10					
2	28 Hours	86c	48d	38	4,5	4					
2.	46 Hours	62d	44e	18	6,0	38					
1	96 Hours	7e	0f	7		93					

Figure 1. The relationship between total germination and EC values in leek seeds

RESULTS

Germination percentages were changed beetwen 96 and 7%. Among the 6 different treatments, the highest seed germination percentage was obtained from Control treatments with 96 (Table 1). EC values were changed beetwen 235,1 and 378,3 μ S/cm⁻¹/g⁻¹. Among the 6 different treatments, the highest EC measurement was obtained from seeds kept for 96 hours at 45 °C with 378,3. Regression analysis showed that radicle germination percentages significantly related to (R²=0,99, P<0,001) EC values (Figure 1).

ECPHSA

Air stimuli induce compact plant growth A. Wegscheider^{1,2}, U. Ruttensperger², M. Hegele¹, M.H. Hagemann¹, J.N. Wünsche¹

¹ University of Hohenheim, Section Crop Physiology of Specialty Crops, Emil-Wolff-Str. 25, 70599 Stuttgart, Germany ² State Horticultural College and Research Station, Diebsweg 2, 69123 Heidelberg, Germany

Contact: achim.wegscheider@uni-hohenheim.de

Introduction and Objective

- The effect of repetitive mechanical impacts on plant morphology was firstly described by Jaffe (1973) and named 'thigmomorphogenesis'. This principle can be used to alter the habitus of plants.
- The main goal of this project is to avoid or at least reduce the use of synthetic plant growth regulators (PGRs) in greenhouse cultivation of ornamentals and to completely replace PGRs in the production of herbs or organic products, where their use is not permitted.

Materials & Methods

- Use of a custom-built "forced air device" (Knecht, Germany) in all greenhouse trials (see Fig. 1).
- Greenhouse crops are treated by moving nozzles with pressurized air (1-1.5 bar) for 3-4 hours and 60-80 passages per day over the plants.

Results

During an experimental period of two years the key results are that plants treated with the "forced air device" had

- shorter but thicker main shoots;
- showed a higher proliferation rate of lateral buds hence a greater number of side shoots;
- an enhanced root system when compared to control plants.

Outlook

The physiological mechanisms leading to these observed morphological changes are also investigated.

Campanula ,Merrybell'

- 25 % reduced plant height
- 35 % reduced shoot length
- 40 % increased ethylene
 production

Solanum lycopersicum ,Romelloʻ

- 35 % reduced plant height
- 40 % reduced shoot length

treated

Fig. 1: "Forced air device" treating *Campanula 'Merrybell'* (Fleischle Company, Germany)

control

treated

Regulation of flowering in strawberry Woodland strawberry as a model

^aMarja Rantanen, ^bKatriina Mouhu, ^bElli Koskela, ^bTimo Hytönen. ^aNatural Resources Institute Finland. ^bDept. of Agricultural Sciences, University of Helsinki, Finland

Background

Strawberry is a facultative short day (SD) plant;

15-18°C and SD < 13°C

Repressor gene *FvTERMINAL FLOWER1* (*FvTFL1*) causes seasonal flowering¹.

Under long day at 18°C (LD) *SUPPRESSOR OF OVER-EXPRESSION OF CONSTANS (FvSOC1)* activates *FvTFL1* to inhibit flower induction²

Ever-bearing accessions are LD plants since they lack functional FvTFL1.

How environmental cues regulate flowering in woodland strawberry?

Materials and methods

Temperature Photoperiod

Developmental stage at flowering qPCR Transgenic plants

Results

Fv FLOWERING LOCUS T1 (*FvFT1*) mediates light signal; LD and far-red light up-regulates *FvFT1*.

In the absence of FvTFL1, *FvFT1* activates flowering.

FvFTox LD accession

FvTFL1 -expression correlates with flowering. Silencing of *FvTFL1* results flowering at 23°C.

High temperature activates *FvTFL1* independently of *FvSOC1*.

Photoperiod pathway is *FvFT1-FvSOC1* dependent.

FvTFL1 integrates photoperiod and temperature signals to repress flowering.

1) Koskela et al. 2012; 2) Mouhu et al. 2013.

This work was funded at 80% by FEDER (project PO1420-17)

Hernández V*., Hellín P., Fenoll J., Garrido I., Cava J., Flores P.

Equipo de Calidad Alimentaria del Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) *virginia.hernandez5@carm.es

Increased air temperature is one of the factors associated with global climate change that may largely affect productivity and quality of horticultural crops

Elicitors are molecules that induce plant defense systems to abiotic or biotic stresses (cross-tolerance)

The aim of this work is to increase tomato yield under high temperature conditions without affecting fruit quality by using elicitors

All the elicitors treatments increased total fruit yield although this effect was only significant for SA, BR (at both low and high doses) and CH (at low dose). This increase was due to an increase of the number of fruits, fruit weight or both parameters

ELICITOR	DOSES	VITAMIN C (mg g ^{.1})	LYCOPENE (µg g ⁻¹)	β-CAROTENE (μg g ⁻¹)	HIDROXIC. ACIDS (µg g ⁻¹)	FLAVANONES (µg g ⁻¹)	FLAVONOLS (µg g ⁻¹)
	0	25.8 ^b	18.1	9.4	25.4	23.9 ^b	11.8
MI	100 µM	21.4ª	22.1	10.0	25.3	16.9ª	10.7
WJ	1000 µM	20.9 ^a	22.0	8.7	21.9	13.8ª	8.9
		*	ns	ns	ns	**	ns <
	0	25.8 ^b	18.1ª	9.4	25.4	23.9	11.8 ^{ab}
84	50 µM	22.3 ^{ab}	24.0 ^b	8.0	25.9	29.8	13.8 ^b
34	200 µM	20.6ª	18.7 ^{ab}	7.8	22.2	23.5	9.4ª
		*	*	ns	ns	ns	*
	0	24.0 ^b	19.5	11.0 ^b	25.4	23.9ª	11.8
C 11	0.1 g/L	22.7 ^{ab}	16.8	9.8 ^{ab}	25.4	38.8 ^b	12.1
СП	1 g/L	20.7ª	14.3	8.2ª	20.3	23.8ª	9.1
		*	ns	*	ns	*	ns
	0	24.9 ^b	18.1	9.4	25.4 ^b	23.9 ^b	11.8 ^b
DD	10 µM	16.4ª	19.2	8.9	19.2 ^{ab}	16.6ª	9.3ª
DK	30 µM	16.3ª	19.5	8.1	17.4ª	16.2ª	8.7ª
		*	ns	ns	*	*	***

Tomato plants were grown in SE Spain in a greenhouse during the winter to summer season (day temperatures up 42 °C). Plants were sprayed 110, 115 and 126 days after transplant with methyl jasmonate (MJ) 100 and 1000 μ M, salicylic acid (SA) 50 and 200 μ M, chitosan (CH) 0.1 and 1 g L⁻¹ and 2,4-epibrassinolide (BRs) 10 and 30 μ M

i \land i) 🥟

ELICITOR	DOSES	YIELD (kg plant-1)	FRUIT NUMBER	
	0	3.98	44.7ª	93.5 ^b
MJ	100 µM	4.03	55.5 ^b	75.5ª
	1000 µM	4.53	53.2 ^b	95.2 ^b
		ns	**	*
	0	3.98ª	44.7ª	93.5
SA	50 µM	4.73 ^b	55.8 ^b	86.2
	200 µM	4.78 ^b	52.2 ^b	94.3
		***	**	ns
	0	4.05ª	47.8 ^a	86.5 ^{ab}
СН	0.1 g/L	4.13ª	52.8 ^{ab}	80.2ª
	1 g/L	5.15	56.0 ^b	95.5 ^b
		**	**	**
	0	3.47ª	46.5 ^a	72.2ª
BR	10 µM	4.73 ^b	54.8 ^{ab}	85.1 ^b
	30 µM	4.66 ^b	57.5 ^b	83.6 ^b
		**	*	**

The beneficial effect of treatments has different effect on the concentration of health-related metabolites:

• In general, concentration of carotenoids, the main metabolites related to heath benefits of tomato, was not affect by the elicitors treatments, except for treatments with 50 μ M SA and 1g/L CH that increased lycopene and decreased β -carotene, respectively

Regards hydrophilic compounds, all the elicitors decreased vitamin C concentration. The effect on phenolic compounds was highly depending on the nature and the dose of the elicitor. In general, increased yield was correlated with decreased phenolic compound concentration, except for 0.1 g/L CH, that significantly increased flavanones concentration